
Heterogeneous Data Race Exhibiting Programs

Akash Panda1, Divyanshu Bhandari2, Rishabh Ravindra Meshram2, Shubham Sharma2

Problem Statement— Evolution of a tighter integration of
CPUs and GPUs are emerging with features such as shared
memories, coherence, and atomics to reduce the computing
overheads and to increase the efficiency of the entire system.
Programming languages allow programmers to exploit these
architectures for productive collaboration between CPU and
GPU threads.[2] In process of doing it, heterogeneous data
races created a big problem in the whole scenario. We have
come up with programs exhibiting heterogeneous data races,
which can be used as a benchmark for heterogeneous data race
detection algorithms.

I. INTRODUCTION

A. Motivation

Heterogeneous system architecture consists of two com-
ponents namely CPU and GPU, and they share the same
memory address space called Unified Memory. Data resides
in the memory space is read or manipulated by both the
processor so we need a proper synchronization between them
for the correct execution of the program.

In massively parallel program, we use different lev-
els of shared memory to communicate between threads.
Recent version of CUDA support global shared memory
and scoped synchronization. Some of such instructions are

threadfence() , threadfence block() , atomicAdd() , atom-
icAdd block(), etc. synthreads() also act like a scope syn-
chronization primitive, as it synchronizes within a block.
Recently CUDA has also added syncwarp() which is a
warp synchronization primitive. Hence, it a possible to write
a racey program that is composed of atomics, but wrongly
scoped . [7]

If we are able to detect data race in heterogeneous system
architecture we can improve the reliability of the programs
in a collaborative environment. This requires tools that detect
data races. In order to design such tools, we need to come
up with a set of programs containing such kind of data races.
By analysing these programs we can accordingly design
algorithms/tools to detect data races.

B. Achievement

We took some massively parallel workloads (Page rank,
Graph connectivity, Graph colouring and Coalesced Trans-
pose) and implemented them using CUDA programming
model. We also implemented work stealing, where each
block used block scoped atomics while performing its own
work, but would use system wide atomics while stealing
some other block’s work. This introduction lead to a data

1M.Tech(Research), Department of CSA IISc Bangalore, India
akashpanda@iisc.ac.in

2M.Tech, Department of CSA IISc Bangalore, India
{bdivyanshu,shubhamsharma,rishabhm}@iisc.ac.in

race. The same memory location being protected by two
different scopes in two different cases.

II. BACKGROUND

A. GPU Hardware

GPU hardware differs from CPU hardware fundamentally.
Memory(global, constant, shared), Streaming Multiproces-

sors(SMs) and Streaming Processors(SPs) form the basic
blocks of a GPU Hardware. An array of SMs, each of which
has N cores make up the GPU. This forms the key aspect
that allows the scaling of the processor. Addition of more
SMs to the device would make the GPU process more tasks,
only if we have enough parallelism in the task.

Fig. 1. HSA Cache Hierarchy

B. Hierarchy

GPUs are designed to run thousands of threads concur-
rently, hence are massively data parallel. CUDA program-
ming model arranges the threads in hierarchy. Threads are
grouped into warps. Multiple warps form a thread block.
Multiple thread blocks form a kernel. Massively data paral-
lel algorithms are being targeted using GPU programming
model, where multiple threads work on the same code but
different data.



C. CUDA Programming Model

Thousands of threads are executed massively parallel to
achieve high throughput. The GPU programming model
incorporates hierarchy to help programmers organize threads.
Blocks are a collection of the threads. A block is a unit of
execution on the Heterogeneous System Architecture(HSA)
component. Compute unit performs execution. An HSA
component can have one or more compute units. A block
is partitioned into warps to match GPU’s execution width.
Warps execute on SIMD units. Each thread has a set of its
registers and private memory. Threads within a block can be
executed in an extended SIMD (single instruction, multiple
data) style. That is, threads are gang scheduled in chunks
called warps. [1] Figure 1 shows an example of HSA cache
hierarchy as seen by the threads.

D. Heterogeneous Systems

HSA combines and exploits the capabilities and features
of the CPUs and GPUs for the users who like to exploit
systems more than the traditional usage scenario.

CPU/GPU interactions can be of following types:[5]
1) Pinned host memory - CPU memory that the GPU can

directly access.
2) Command buffers - The buffers written by the CUDA

driver nd read by GPU to control its execution.
3) CPU/GPU synchronization: how the GPU’s progress is

tracked by CPU.
Shared virtual memory(SVM), system-wide atomics and

scoped atomics are the latest features of heterogeneous
system architecture and programming models which is im-
portant for collaboration. Host and device processor share the
same virtual address range via the Shared Virtual Memory.
It improves performance in collaborative programs, as this
would now not require memory transfer mechanisms. With
the introduction of SVM, memory coherence became an
important issue. [2] System-wide atomics provides support
to a variety of CPU-GPU collaborative patterns by enabling
fine grain synchronization across devices.[4] Scoped atomics
provides support of a lower granularity of atomics, that the
collaborative threads can agree upon. For example, if we can
make sure that the communication is not required beyond
the block, we can use a block synchronization primitive or
a block scoped atomic operation.

E. Memory Model

Parent and child share the same global and constant
memory storage, but have distinct local and shared memory.
Global memory : Parent kernel and child kernel have
coherent access to global memory, but with weak consistency
guarantee.
Constant memory : Constants cannot be modified, even
between parent and child launches. Value of all constant
variables must be set by host before the launch.
Shared memory are private to a thread block. Behaviour is
undefined when an object in these locations is being accessed
outside of the scope within which it belongs to.
Local memory is private to the executing thread, and is not

visible to threads outside the thread.
Table in Figure 2 shows the scope and lifetime of different
variables.

Fig. 2. Memory model

III. RELATED WORKS

Derek R. Hower et al presented Heterogeneous-race-free
Memory Models, where they have embraced scoped synchro-
nization with a new class of memory consistency model that
add scoped synchronization to data-race free memory models
like those of c++ and java.

Marc S. Orr et all introduced Remote Scope promotion.
They have discussed about Static local sharing and dynamic
local sharing. Static local sharing is that shared data is
partitioned statically and each block has its own copy of
data that they have to work on, whereas dynamic partitioning
means, partitioning takes place while execution of threads.
Each block picks up more work when it completes a set
of work. In static partitioning, we can keep the shared data
in block scope, whereas in dynamic partitioning we have
to keep data in global scope. Work stealing is an example
of static as well as dynamic partitioning. In work stealing,
the data is partitioned statically. But if some block takes
more time in completing its work and some other block has
finished its work, it can pull work remaining in other block’s
queue.

Juan et al presented CHAI(Collaborative Heterogeneous
Applications for Integrated-architectures), which is a suite
of collaborative heterogeneous benchmarks that use to max-
imum advantage the heterogeneous architectures, and spread
over a range of collaborative patterns. They concluded CHAI
as much needed for evaluation of emerging heterogeneous
systems.[2]

Matthew D. Sinclair et al presented ”HeteroSync: A
Benchmark Suite for Fine-Grained Synchronization on
Tightly Coupled GPUs”, where they combined set of micro-
benchmarks from various papers and came up with a set of
GPU micro-benchmarks that uses various kinds of synchro-
nization. [3]

We want to come up with a set of programs that lack
various kinds of synchronization and would actually ex-
hibit data race in them. Our work will focus on studying
various data races in heterogeneous architecture programs
and come up with programs actually having those. These
set of programs would be helpful for algorithms detecting
heterogeneous data races. In this way, our work differs from
the above mentioned papers, which presented workloads for
heterogeneous systems.



IV. PROJECT WORK

We used Nvidia CUDA Toolkit 9.2 and driver version
Driver Version: 396.37 for this project. Tesla P40 GPU
was used during the course of project. Our project was to
write programs that would have heterogeneous data race
in it arising because of usage of wrong scoped synchro-
nization primitives and atomics. We started with writing
simple program using system wide atomics. Removing them
lead to a data race in the programs. We then started un-
derstanding CUDA programming model and what types of
programs exploit the GPU architecture. We then understood
the different programs being written in CHAI workload.
The programs provided us with an idea of how to exploit
massively parallel algorithms using CUDA programming
model. We also understood the programs in the workload
and learn about different synchronization primitives in GPUs.
Then we identified some parallel workloads. We zeroed
on to Page rank, Graph connectivity, Coalesced Transpose
and Graph colouring problem. We implemented them using
CUDA programming model.

A. Implemention on Different Workloads

Below there are four different problems which possesses
high level of parallelism that we have used as workloads.

Page Rank:

Graph Coloring: Graph coloring problem deals with
assigning colors to the vertices such that no two adjacent
vertices get the same color. However, coloring an arbitrary
graph is known to be NP-Hard problem. So, we need
parallel algorithms to exploit utilities of multi-core hardware
systems(GPUs). Each core can independently process a
subtask and speedup the overall performance. In this parallel
implementation, we divide the whole task of coloring the
graph into smaller subtasks. Further, each block of threads
is responsible to complete a subtask independently where
each thread of the block process a vertex(coloring of the
vertex) in parallel with other threads. Also, we implement
work stealing that is if a block completes its subtask earlier
then that block can steal the work of other block. This
implementation is inspired by Pingfan Li et al. paper”High
Performance Parallel Graph Coloring on GPGPUs”.

Graph Connectivity: Graph Connectivity is well known
problem which shows a given graph is connected or not.
Above implementation of graph connectivity also calculated
the distance of each node from a given node which makes
easier to implement other problems on graphs(like Shortest
Distance,Minimum Spanning Tree, Connected Components
etc.). Implementation of traversal(search) algorithm is
inspired by the Siddharth Srinivasa paper ”Accelerating
Large Graph Algorithms on the GPU 2007”. Which helps
our algorithm to traverse faster.

Coalesced Transpose: This technique to find transpose of
a matrix make use of tiling and shared memory to avoid

the large strides through global memory which gives a
performance improvement over the naive method to find
transpose of a matrix.The algorithm used is inspired by
”Optimizing Matrix Transpose in CUDA by Greg Ruetsch
and Paulius Micikevicius(January 2009)”.

Input Format: All the above algorithm works on the
same input file of 9th DIMACS Implementation Challenge.
These algorithms can use any input file which is of format
is as follows:
(Beginning of the file)
Nodes Edges Source node

A0 B0
A1 B1
...

C0 D0
C1 D1
...
Each tuple (Ai, Bi) represents one node. Each tuple (Cj,
Dj) represents one edge. Thus, the file contains the list
of nodes, followed by the list of edges. Ai indicates the
position where the edges of node i start in the list of edges.
Bi means the number of edges of node i. Cj is the node
where edge j terminates (i.e., the head of the edge).

B. Dividing the Global Data-Structure

We introduced a global queue as the shared data structure
and then divided tasks into multiple queues for each block
processing its own queue elements.

Fig. 3. Global Queue Shared Among Blocks

As shown in the fig 3 we divided queue into the multiple
smaller queues which are accessed by blocks. each queue
has its head and tail pointers which are implemented in the
programs such that blocks can access respective queues for
completion of their tasks.

C. Work Stealing Implementation

Then we went a step further to implement work stealing.
Dynamic global sharing lead us to implement work stealing.
Whenever a block finished its work, it would search for
free work on others queues which has not being processed
yet and would pick up those for processing. This process
leads to work stealing. While implementing work stealing,
we used two different scopes of atomics in two different
cases. An atomic function performs a read-modify-write
atomic operation in global or shared memory.[5] When a



block is working in its own queue, it would use block wise
atomics(i.e. atomicAdd block(), etc.), but once a block is
stealing other’s work, it would use device wise atomics(i.e.
atomicAdd(), etc.). These two different usage of scopes lead
to a data race when the same location being accessed in
two different scopes by different threads in different blocks.

atomicAdd block() implies that the instruction is atomic
only with respect atomics from other threads in the same
thread block.
atomicAdd() reads a word at some address in global or
shared memory, adds a number to it, and writes the result
back to the same address.

V. FUTURE WORK AND CONCLUSION

In this course project, we looked into different workloads
for heterogeneous systems and then came up with a set of
programs that have the heterogeneous data race in them.

These programs can be used as a set of inputs for
Heterogeneous Data race detection algorithms.

The set of programs can be found at
https://gitlab.com/akashpanda/e0243-project-heterogeneous-
races.git

REFERENCES

[1] ”HSA Programmers Reference Manual: HSAIL Virtual ISA and
Programming Model, Compiler Writers Guide, and Ob-ject Format
(BRIG) Version 1.0 Provisional,” HSA Founda-tion, Spring 2013.

[2] J. Gmez-Luna, I. El Hajj, L.-W. Chang, V. Garcia-Flores, S. Garcia de
Gonzalo, T.Jablin, A. J. Pea, W.-M. Hwu. Chai: Collaborative Hetero-
geneous Applications for Integrated-architectures. In Proceedings of
IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), 2017.

[3] Matthew D. Sinclair, Johnathan Alsop, Sarita V. Adve. HeteroSync: A
benchmark suite for fine-grained synchronization on tightly coupled
GPUs. In proceedings of IEEE International Symposium on Workload
Characterization (IISWC), 2017.

[4] W.-m. W. Hwu, Heterogeneous System Architecture: A New Compute
Platform Infrastructure. Morgan Kaufman, 2015.

[5] ”The Cuda Handbook - A Comprehensive Guide to GPU Program-
ming”, Nicholas Wilt, 2013.

[6] Marc S. Orr, Shuai Che, Ayse Yilmazer, Bradford M. Beckmann,
Mark D. Hill, David A. Wood. Synchronization Using Remote-Scope
Promotion . In Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2015.

[7] Derek R. Hower, Blake A. Hechtman, Bradford M. Beckmann, Bene-
dict R. Gaster, Mark D. Hill, Steven K. Reinhardt, David A. Wood .
Heterogeneous-race-free Memory Models . In Proceedings of the 19th
international conference on Architectural support for programming
languages and operating systems (ASPLOS) 2014.


