
Semantic Information of Deduplicated Pages in Virtual Machines

Summary— The efficacy of the memory subsystem often
determines the overall system performance, especially for
applications that access a huge amount of data. A well-designed
memory subsystem should, in one hand try to reduce the
memory footprint by avoiding storing unnecessary data and
at the same time, reduce the cost of access to data. The OS
and the hypervisor plays a critical role in achieving the above
goals. Content Aware Page Deduplication techniques, such as
KSM, tries to reduce the memory footprint by merging pages
with duplicate contents.
We have build a tool to get semantic information of merged
pages in order to get an idea of what pages are getting merged,
what percentage of them are intra-vm merging and how much
are inter-vm merging.

I. INTRODUCTION

A. Types of pages

Our tool gets semantic information of merged pages in
order to get an idea of what pages are getting merged. The
types of pages are being characterized as under:

1) Kernel pages: There are the pages which are a part of
kernel data structures or allocated by kernel threads.

2) Page cache: The page cache is the main disk cache
used by the Linux kernel. In most cases, the kernel refers to
the page cache when reading from or writing to disk. New
pages are added to the page cache to satisfy User Mode
processes’s read requests. If the page is not already in the
cache, a new entry is added to the cache and filled with the
data read from the disk. If there is enough free memory, the
page is kept in the cache for an indefinite period of time and
can then be reused by other processes without accessing the
disk.

3) Anonymous pages: These are memory mapped pages
that are not part of any files.

4) Buddy pages: There are free memory blocks managed
by the buddy system allocator.

B. Types of Sharing

We separate the sharing arising into two different cate-
gories: intra-VM and inter-VM.

1) Intra-VM sharing: Memory deduplication within a
single virtual machine, i.e. when different pages belonging
to the same virtual machine are found to have same content
and merged, is termed as intra-VM sharing. Such pages
contribute to Intra-VM merging percentage.

2) Inter-VM sharing: Memory deduplication arising
across virtual machines are called inter-VM sharing. When
pages belonging to different virtual machines are found to
have same content and merged, its called inter-VM merging.
Such pages contribute to Inter-VM merging percentage.

II. EXPERIMENTAL SETUP

The experiments were performed on an Intel(R) Core(TM)
i7-8700 CPU @ 3.20GHz CPU, having 32 GB of memory.
KVM was used as hypervisor. Each Virtual Machine was
given 10 GB of memory.

A. Tool

We have built a tool to get the semantic information of
pages merged by KSM. The semantics are characterized by
kernel pages, page cache pages, anon pages and pages with
buddy allocator. It uses /proc file system interfaces to get
statistics of the pages being currently allocated by the virtual
machine. For the KSM pages, we get the guest frame number
with the help of a kernel module. These guest frame numbers
are sent to the guest machine to generate the semantic details
of the pages referred to by those physical addresses using a
kernel module. This tool makes heavy usage of files while
generating semantic information. This affects the readings
taken as these pages gets included in the list of merged pages.
We have excluded the page cache that is generated because
of this tool.

B. Workloads

We have setup two virtual machines starting nearly at the
same instant.

1) Bare Virtual Machines: No workloads run on these
machines.

2) Redis: Redis instance is started as server on both VMs
and is loaded with exactly the same content.

3) Apache: We have setup apache server to serve random
files in both the virtual machines. The same set of files
is present in both the servers. Hey[1] workload generator
instance generates the load on both the servers. It generates
a total of 2000 queries with each query being generated after
an interval of 2 seconds.

4) Graph500: Graph500 benchmark performs breadth-
first-search over undirected graphs. We run the benchmark
around the same time on both the Virtual Machines.

5) MySQL: Each Virtual Machine starts MySQL instance
as server and loads inmemory tables with exactly the same
data on both. The data is being populated by files.

III. ANALYSIS OF MEMORY DEDUPLICATION

A. Deduplication Semantics

The semantic information of pages deduplicated varies
across workloads. The types of pages getting merged depend
entirely on the workloads running in the Virtual Machines.
In our experiment, we run same workload on two different
VMs to get the semantic information of the pages being



merged by KSM. We observe that the type of pages getting
merged depends entirely on the applications running on
the VMs. In the case of bare VMs (Fig 1), most of the
deduplication comes from kernel pages and pagecache. In
this case, the page cache mostly consists of library files,
system default daemons (such as systemd, journald) and
binary files. In the case of Apache (Fig 3), most of the
deduplication comes from page cache. This was expected
because of the setup of our workload, which serves a random
set of files on requests. In Redis and MySQL workloads, we
populate the databases from files in the disk. Hence, initially
page cache and anonymous pages being merged increases.
After the database gets filled, there is not much increase
in the anonymous pages being merged. From this point of
time, the number of pagecache pages that are being merged
also starts decreasing. Most of the deduplication comes from
anonymous pages in Redis (Fig 2), MySQL (Fig 6) and
Graph500 (Fig 4) workloads. We conducted the experiment
of graph500 workload without excluding the page cache
pages being generated as a result of our tool. Fig 5 shows us
the graph in this case. We can see from the graph that at the
same time when the workload ends, the anonymous pages
merged are broken and buddy pages being merged increases
sharply and then keeps in decreasing. In turn, the page cache
pages getting merged keeps on increasing.

We also conducted experiment expecting merged pages to
break. We ran redis instance on both the virtual machines,
filled them up with exactly the same content. We then
updated each redis key on one of the Virtual Machine with
random value. This will start breaking the already merged
pages. Fig 7 shows us what exactly happens in this case. The
anonymous pages are first merged, and then starts breaking.

Fig. 1. Bare VMs

Fig. 2. Redis

Fig. 3. Apache

Fig. 4. Graph500



Fig. 5. Graph500: Without removal of page cahe pages being generated
by tool

Fig. 6. MySQL

Fig. 7. Redis: Breaking of merged pages

B. Inter vs Intra merging of pages

When a VM boots, most of the pages that gets merged
are intra-VM. But as the applications start in the Virtual
Machine, the inter-VM merging percentage increases. While
running two bare Virtual Machines, the intra-VM merging
percentage is always higher than the inter-VM merging
percentage. Whereas, if we consider Redis (Fig 9), Apache
(Fig 10), MySQL (Fig 12) or Graph500 (Fig 11) work-
loads, initially the intra-VM merging percentage is higher.

As the applications start, the intra-VM merging percentage
decreases and inter-VM merging percentage increases. This
was expected to happen as we are running homogeneous
workloads on the Virtual Machines. Our workloads are such
that it fills up the memory with identical content. So, once
the workloads starts on the virtual machines, the inter-VM
merging is bound to happen, which in turn increases the
percentage of inter-VM merging.

Fig. 8. Bare VMs: Inter-VM vs Inta-VM merging

Fig. 9. Redis: Inter-VM vs Inta-VM merging

Fig. 10. Apache: Inter-VM vs Inta-VM merging



Fig. 11. Graph500: Inter-VM vs Inta-VM merging

Fig. 12. MySQL: Inter-VM vs Inta-VM merging

IV. CONCLUSION

We can clearly see that the semantic information of pages
deduplicated varies across workloads. The types of pages
getting merged depend entirely on the workloads running in
the Virtual Machines. When a VM boots, most of the pages
that gets merged are intra-VM. But as the applications start
in the Virtual Machine, the inter-VM merging percentage
increases. When homogeneous workloads are running on
different virtual machines with same memory footprint, then
a large percentage of merging is across VMs.

REFERENCES

[1] Hey HTTP load generator https://github.com/rakyll/hey.git
[2] The Page Cache https://www.oreilly.com/library/view/understanding-

the-linux/0596005652/ch15s01.html
[3] Pagemap, from the userspace perspective

https://www.kernel.org/doc/Documentation/vm/pagemap.txt


