
Prevelence of Page Splintering

Akash Panda1

Problem Statement— Translation Lookaside buffers(TLB)
misses are long latency operations. In hypervisor-based virtual
environments, the penalty is even worse as TLB miss would
induce a nested page table walk. Huge pages (2MB or 1GB)
is supported by modern architectures to curtail the overhead
due to TLB misses. An increase in page size would mean less
number of page table entries. KSM is a memory deduplication
technique, which improves efficiency of memory usage. With
huge pages in picture, the probability of two pages being exactly
equal would be very less. So, there is a tradeoff between access
performance and deduplication rate. Host operating systems
may splinter pages in order to achieve good memory efficiency.
My work is to calculate the amount of Page Splintering present
while modern workloads are being run.

I. INTRODUCTION

A. Motivation

Page table is the data structure that holds the Virtual
Address to Physical address mappings. At the beginning, if
a processor needs to map a virtual address to a physical
address, it would traverse the page directory completely to
get the page table entry of interest. Hence, Using a typical 4
level page table walk in order to access a memory location,
we make 4 memory references just to get the physical address
of the memory location to be accessed. Here comes TLB
to the rescue. TLB takes into account that most processes
exhibit a locality of reference[2]. TLB is a small associative
memory that caches the Virtual address to Physical address
mappings. A TLB miss would incur a long latency operation,
which would require a page table walk to get the address
mapping. If we look at a hypervisor based Virtual machine
environment, the TLB miss penalty is enormously high as
a two-dimensional page table walk would incur 24 memory
references as compared to 4 in non virtualized environments.

Buell et al looked at areas that made applications run more
slowly in virtualized environments. They found out that in-
crease in TLB miss handling penalty in the hardwire assisted
Memory Management Unit is the largest contributor to the
performance gab between native and virtualized servers.[1].

Large pages improves memory access performance. Large
pages implies fewer page table entries and a larger TLB
reach. Fan Guo et all has shown that enabling large pages in
both guest and host can improve memory access performance
by up to 68% [3]. Redundant data is present across Virtual
machines, where many of the pages across VMs share the
same content. Base sized pages (4KB pages) have a high
probability to share the same content with another base
sized page. The probability of two huge pages sharing same

1M.Tech(Research), Department of CSA IISc Bangalore, India
akashpanda@iisc.ac.in

content is quite less. Fan Guo et all have shown that large
pages also reduce the deduplication opportunities [3]. Virtu-
alization systems often splinters the guest operating system’s
large pages into base size pages in the host, sacrificing the
performance benefits.

With emergence of cloud computing, virtualization tech-
nologies are being hugely employed in industry to cater
diverse workloads. As already mentioned, the use of large
pages in both guest(virtualized) system and host system can
significantly increase the performance of the application run-
ning in the virtualized servers, whereas splintering of large
pages in host system may sacrifice performance benefits.

If we can know what amount of pages are being splintered
and what is the main cause behind splintering, we can then
start looking at solutions to take benefit of both reduced
address translation overhead and page deduplication engine
efficiency.

B. Achievement

I evaluated amount page splintering happenning while
running different workloads in virtualized environment.

II. BACKGROUND

A. Virtual Memory

The x86 architecture allows for more memory to be
addressed than is available physically in the hardware. It is
achieved by having each process access its own addressable
memory. The process thinks the whole memory is available
for its use. This is known as the virtual memory of the
process.

B. Page table

Page table is the data structure that holds the Virtual
Address to Physical address mappings, where the data is ac-
tually stored. Page table consists of Page table entries(PTEs),
which stores a frame number and optional status (like pro-
tection) bits. Address space is always sparsely populated, as
most of the processes do not use the full available address
space in 32 bit systems and not even a part of it in 64 bit
systems. Hence, the page table is implemented as a sparse
tree representing the address space.

C. Two-dimentional page tables

Guest Virtual Address(GVA) are converted to Guest Phys-
ical Address(GPA) by unmodified guest page table. GPA is
converted to System Physical Address(SPA) by nested/ex-
tended page table. Nested Paging along with native paging
constitutes the two-dimensional page walk.

Fig. 1. Virtual Address to Physical Address [5]

Fig. 2. Nested Paging [4]

D. Large Pages

As we already know, memory is managed in blocks known
as pages. Size of a regular page is 4KB. There are two ways
to manage large amount of memory - (a) Increase the number
of TLB entries, (b) Increase the Page size.

First method is inefficient, as current hardware only sup-
ports limited number of TLB entries. Also the algorithms
for the hardware and memory management may work well
with thousands of entries but many not perform well with
millions of entries.

Blocks of memory of 2MB or 1GB sizes are called huge
pages. The page tables used by the 2MB pages are suitable
for managing multiple gigabytes of memory, whereas the
page tables of 1GB pages are best for scaling to terabytes of
memory. Huge pages can be difficult to manage manually,
and often require significant changes to code in order to
be used effectively. Linux kernel implements Transparent
Huge Pages(THP). THP hides much of the complexity in
using huge pages from system administrators and developers.
THP is an abstraction layer that automates most aspects of
creating, managing, and using huge pages. THP support is
an optimization. Large pages are managed automatically and
transparently for the application.

E. Kernel Samepage Merging(KSM)

KSM is a page deduplication feature. It is a scanning
based mechanism to detect and share pages having same
content. KSM is implemented as a linux kernel thread that
runs and periodically scans the memory regions, advised
as mergeable(by calling madvise(MADV MERGEABLE))
looking for identical pages. When identical pages are found,
it merges them and marks it copy on write(COW). KSM is
able to merge only Anonymous memory and not memory
mapped pages. As memeory of guest is black box to the

system, so all the pages are mapped as anonymous. Hence,
KSM can merge all of the pages related to a Virtual Machine.
[6]

KSM uses two red-black tree data structures for lookup:
stable and unstable trees. All merged pages are being held by
stable tree’s pointers, while all potential sharing candidates
are being held by unstable tree’s pointers. A potential sharing
candidate is a page which did not change from the last time
it has been compared. The trees are sorted by the content of
the pages. The whole KSM process can be seen in Figure 3.

Fig. 3. KSM process [6]

KSM allows memory pages with identical content to be
transparently shared between Linux processes, and therefore
between Linux virtual machines.

F. Large Pages and Deduplication Opportunities

Redundant Data is common across Virtual Machines.
Many of the 4KB pages have same contents. But large pages
reduce deduplication opportunities. Very few large pages are
exactly the same. Deduplication may not be useful in case
of large pages. Aggressive Deduplication Approaches are
currently employed by OSes. They split the large pages into
base pages aggressively and performs deduplication among
base pages [3]. Although this saves significant amount of
memory, but the page tables grow bigger, which will in
turn reduce the hit ratio of TLB and increase the address
translation time.

III. ACHIEVEMENTS

A. Implementation

I used Linux Kernel (v4.19.0) as the base version on which
I performed my experiments. I wrote a kernel module to
get information about pages of a process. When the kernel
module is loaded, it would dump the information about the
pages of the particular process (whose pid is to be given as
an argument to the module).

Code snippet for the above process is shown below:

s t r u c t m m s t r u c t ∗mm = p i d t o m m s t r u c t (p i d) ;
i f (mm == NULL) {

/ / Re po r t E r r o r t o t h e module

r e t u r n −1;
}
s t r u c t v m a r e a s t r u c t ∗vmas = mm−>mmap ;
w h i l e (vmas != NULL) {

u n s i g n e d long v m s t a r t ,
vm end ;
v m s t a r t = vmas−>v m s t a r t ;
vm end = vmas−>vm end ;
w h i l e (v m s t a r t <= vm end) {

i n t p a g e t y p e ;
u n s i g n e d long p f n v a l u e =

g e t p f n v a l u e (
mm , v m s t a r t , &p a g e t y p e
) ;

/ / Dump t h e Page i n f o r m a t i o n
i f (p a g e t y p e == PT 1G) {

v m s t a r t +=
((u n s i g n e d long)1 << 3 0) ;

} e l s e i f (p a g e t y p e == PT 2M) {
v m s t a r t +=

((u n s i g n e d long)1 << 2 1) ;
} e l s e i f (p a g e t y p e == PT 4K){

v m s t a r t +=
((u n s i g n e d long)1 << 1 2) ;

}
}
vmas = vmas−>vm next ;

}

I wrote a kernel module to get guest Page Frame Numbers
to Host Virtual Addresses. The input to this module will be
file name of the file, where the Guest Page Frame numbers
are dumped into and the pid of the running qemu process
which holds the Virtual machine.

Pseudo code snippet of the above process is shown below.

/ / Get f i l e s t a t i s t i c s i n s t a t
/ / Then g e t s i z e o f f i l e
u n s i g n e d long long s i z e o f f i l e

= s t a t −>s i z e ;
/ / A l l o c a t e d a t a a s p e r s i z e o f f i l e
c h a r ∗ d a t a = kmal loc (

s i z e o f (c h a r) ∗ s i z e o f f i l e ,
GFP ATOMIC
) ;

u n s i g n e d long long n o o f v a s = 0 ;
i f (! d a t a) {

/ / In fo rm t h e module a b o u t
/ / f a i l e d a l l o c a t i o n o f s p a c e
/ / t o r e a d d a t a .

} e l s e {
f i l e = f i l e o p e n (

f i l e n a m e , O RDONLY , 0
) ;

f i l e r e a d (
f i l e , 0 , da t a , s i z e o f f i l e
) ;

c h a r ∗ v i r t u a l a d d r e s s s t r i n g ;
/ / l oop a l l l i n e s i n t h e f i l e a s l i n e

/ / v i r t u a l a d d r e s s s t r = l i n e
/ / Dump mapping u s i n g

/ / g f n t o h v a (
/ / g e t k v m p t r (p i d) ,
/ / v i r t u a l a d d r e s s) ;

}
}

I wrote a script to invoke the kernel modules and generate
the statistics. The flow of experiment is shown in Figure 4.

Fig. 4. Flow of code

I ran the workload in the guest Operating System. Then
would run the Data and Statistics collector script at the
host, which would ssh to the guest machine to generate
the information of pages of the guest, and would copy the
statistics to host. Then it would generate statistics at host
system for the pages of the qemu process. It would then
generate the Guest Physical to host virtual mapping. At
last it would parse the generated data to get the splintering
information.

B. Experimental Setup

CPU: Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz

Memory: 32 GB

Hypervisor: KVM

Virtual Machine’s memory: 10 GB

The experiments were conducted enabling THP at both
guest and host. The enabled setting of THP was kept ”al-
ways”.

C. Workloads used

Workload Description
XSBench XSBench is a mini-app representing a key

computational kernel of the Monte Carlo
neutronics application OpenMC.

Gups The RandomAccess benchmark as de-
fined by the High Performance Comput-
ing Challenge (HPCC) tests the speed at
which a machine can update the elements
of a table spread across global system
memory, as measured in billions (giga) of
updates per second (GUPS).

Redis Redis is an open source (BSD licensed),
in-memory data structure store, used as a
database, cache and message broker.

Aerospike Aerospike is a distributed, scalable
NoSQL database.

IV. RESULTS

Figure 5 and Figure 7 shows the prevalence of page
splintering in those workloads. Figure 5 shows the percentage
of huge pages allocated in those workloads and Figure 7
shows the percentage of huge pages allocated in guest being
splintered into small base size pages in host. Percentage of
huge pages is measured as the total number of huge pages
out of the total number of pages. Percentage of Memory
backed by huge pages is the amount of memory being backed
by huge pages out of the total memory of the process.
Percentage of page splintering is measured as percentage of
large pages in the guest being broken down into base sized
pages in the host.

Workload Percentage of Huge pages
XSBench 57.25
Gups 45.38
Redis 0.70
Aerospike 33.83

Fig. 5. Percentage of Huge Pages

Workload Percentage of memory backed by Huge
pages

XSBench 99.85
Gups 99.76
Redis 77.47
Aerospike 99.26

Fig. 6. Percentage of Memory backed by Huge Pages

Workload Percentage of Page splintering
XSBench 66.59
Gups 58.92
Redis 90.57
Aerospike 95.36

Fig. 7. Percentage of Page Splintering

V. CONCLUSION AND FUTURE WORK

From the results, we are able to see that there is a quite
good amount of splintering while running these workloads.
XSBench had 66.58% of huge pages being splintered in
the host, gups had 58.92%, redis 90.57%, and for aerospike
95.35% large pages are being splintered into base pages.

Future work can be carried out on exploring the reason for
splintering in each of the workloads, and find out a solution
to get balance between the page deduplication benefit and
large page benefits.

VI. SOURCE CODE

Kernel modules used in the project can be found at:
https://github.com/akashiisc/kernel-modules.git

Modified kernel used in the project can be found at :
https://gitlab.com/akashpanda/kernel.git. You have to check-
out the splintering-4.19 branch.

Sciripts used for statistics collection can be found at:
https://github.com/akashiisc/statistics-collector.git

REFERENCES

[1] Jeffrey Buell, Daniel Hecht, Jin Heo, Kalyan Saladi, H. Reza Taheri.
Methodology for Performance Analysis of VMware vSphere under
Tier-1 Applications. VMWare Technical Journal, Summer 2013, pp19-
28.

[2] https://www.kernel.org/doc/gorman/html/understand/understand006.html
[3] Fan Guo, Yongkun Li, Yinlong Xu, Song Jiang, John C. S. Lui.

SmartMD: A High Performance Deduplication Engine with Mixed
Pages. In the Proceedings of the 2017 USENIX Annual Technical
Conference (USENIX ATC 17)

[4] http://www.linux-kvm.org/images/c/c8/KvmForum2008$kdf2008 21ṗdf
[5] https://lwn.net/Articles/716603/
[6] Konrad Miller, Fabian Franz, Thorsten Groeninger, Marc Rittinghaus,

Marius Hillenbrand, Frank Bellosa. KSM++: Using I/O based hints to
make memory deduplication scanners more efficient. In the proceed-
ings of RESoLVE’12.

[7] https://access.redhat.com/documentation/en-
us/red hat enterprise linux/6/html/performance tuning guide/s-
memory-transhuge

[8] https://www.perftuning.com/blog/linux-hugepages-improves-x86-
memory-performance-large-databases/

[9] https://lwn.net/Articles/330589/
[10] https://wiki.debian.org/Hugepages
[11] https://www.aerospike.com/docs/
[12] https://redis.io/
[13] https://github.com/alexandermerritt/gups
[14] https://github.com/ANL-CESAR/XSBench

