ENHANCEMENT OF TSUNAMI UDP
PROTOCOL

Akash Panda (11UCS004)
Anand Solanki (11UCS008)
Ankur Pratap (11UCS010)
Shubham Upadhyaya (11UCS057)

Supriya Sarkar (11UCS063)

COMPUTER SCIENCE & ENGINEERING DEPARTMENT
NATIONAL INSTITUTE OF TECHNOLOGY,AGARTALA

INDIA-799046
March 2015

ENHANCEMENT OF TSUNAMI UDP
PROTOCOL

Report submitted to
National Institute of Technology, Agartala
Jor the award of the degree

of
Bachelor of Technology

by
Akash Panda (11UCS004)
Anand Solanki (11UCS008)
Ankur Pratap (11UCS010)
Shubham Upadhyaya (11UCS057)
Supriya Sarkar (11UCS063)

Under the Guidance of

Mr. Anupam Jamatia
Assistant Professor, CSE Department, NIT Agartala, India

COMPUTER SCIENCE & ENGINEERING DEPARTMENT
NATIONAL INSTITUTE OF TECHNOLOGY AGARTALA
January, 2022

Dedicated To

To our Loving Families for their kind love & support.
To our project supervisor Mr. Anupam Jamatia for sharing his valuable

knowledge, encouragement & showing confidence on us all the time.

iii

%The rise of Google, the rise of Facebook, the rise of Apple, I think
are proof that there is a place for computer science as something that solves
problems that people face every day.*®

-Eric Schmidt (Executive Chairman, Google)

v

REPORT APPROVAL FOR B.TECH

This report entitled “Enhancement of TsunamiUDP Protocol”’, by Akash Panda (11UCS004),
Anand Solanki (11TUCS008), Ankur Pratap (11UCS010), Shubham Upadhyaya (11UCS057),

Supriya Sarkar (11UCS063), is approved for the award of Bachelor of Technology in

Computer Science & Engineering.

Mr. Anupam Jamatia
(Project Supervisor)
Assistant Professor
Computer Science and Engineering Department
NIT Agartala

Mr. Rajib Chowdhuri
(Project Coordinator)
Assistant Professor
Computer Science and Engineering Department
NIT Agartala

Mr. Mrinal Kanti Deb Barma
(Head of the Department)

Assistant Professor

Computer Science and Engineering Department

NIT Agartala

Place:NIT Agartala

DECLARATION

We declare that the work presented in this report titled “Enhancement of Tsunami
UDP Protocol”, submitted to the Computer Science and Engineering Department,
National Institute of Technology, Agartala, for the award of the Bachelor of Tech-
nology degree in Computer Science & Engineering, is an extension of existing
work. We have not submitted the same work for the award of any other degree. In
case this undertaking is found incorrect, I accept that my degree may be uncondi-

tionally withdrawn.

January 2022
Agartala
Akash Panda
Anand Solanki Ankur Pratap
Shubham Upadhyaya Supriya Sarkar

vi

CERTIFICATE

It is certified that the work contained in the report titled “Enhancement of Tsunami UDP Pro-
tocol”’, by Akash Panda (11UCS004), Anand Solanki (11UCS008), Ankur Pratap (11UCS010),
Shubham Upadhyaya (11UCS057), Supriya Sarkar (11UCS063), has been carried out under my

supervision and this work has not been submitted elsewhere for a degree.

Mr. Anupam Jamatia Mr. Mrinal Kanti Deb Barma
(Project Supervisor) (Head of the Department)
Assistant Professor Assistant Professor

Computer Science and Engineering Department Computer Science and Engineering Department
NIT Agartala NIT Agartala

vii

Acknowledgement

We would like to take this opportunity to express our deep sense of gratitude to all who helped

us directly or indirectly during this project work.

Firstly, we would like to thank our supervisor, Mr. Anupam Jamatia, Assistant Professor for
being a great mentor and the best adviser we could ever have. His advise, encouragement and
critics are source of innovative ideas, inspiration and causes behind the advancement of the
project. The confidence shown on us by him was the biggest source of inspiration for us. It has

been a privilege working with him.

We are highly obliged to all the faculty members of Computer Science and Engineering Depart-
ment for their support and encouragement. We also thank our Director Dr. Gopal Mugeraya
and H.O.D, CSED Mr. Mrinal Kanti Deb Barma for providing excellent computing and other

facilities without which this work could not achieve its quality goal.

viii

Finally, we are grateful to our parents for their support. It was impossible for us to advance in

work without their love, blessing and encouragement.

- Akash Panda - Anand Solanki

- Ankur Pratap - Shubham Upadhyaya

- Supriya Sarkar

iX

List of Figures

4.1 Comparison of throughput of UDP based protocols [1]| 12
4.2 UDT Throughputvstime [1]]| 13
4.3 Throughputs under different loss [1] 14
4.4 Throughputs under different RT'T conditions [I][. 14

1 Multithr rver Archi Tel . .. 19
[5.2 Snapshot of ps commad while running current version|. 19
[5.3 Snapshot of ps command while running our improved version| 19
[5.4 Screenshots of TUI Application| 20

List of Tables

(L

Differences between TCPand UDP |10} 9

[2

Comparison between for products using UDP based data transfer [8] 16

xi

Abstract

One of the biggest challenges facing companies/firms/research units that want to leverage the
scale and elasticity of data for analytics or research is how to move their data into the cloud.
Its increasingly common to have data-sets that are multiple petabytes. Moving data of this
magnitude can take considerable time. To accomplish this, Tsunami-UDP protocol comes into
action.

Tsunami UDP Protocol: A fast user-space file transfer protocol that uses TCP (Transmission
Control Protocol) control and UDP (User Datagram Protocol) data for transfer over very high
speed long distance networks, designed to provide more throughput than possible with TCP
over the same networks. This project report provides an attempt to enhance current standards
of Tsunami-UDP protocol. We have taken it as a challenge to integrate Multi-threading, a
TUI/GUI (Terminal User Interface/Graphical User Interface), CLI (Command Line Interface)

and prediction of data delivery to the current standard of Tsunami-UDP protocol.

Xii

Contents

ii

|Acknowledgement| viii
[Abstract] xii
(l__Introduction| 1
(L1 Transmission Control Protocoll 2
(1.2 User Datagram Protocol| 2
(L3 Need For Tsunami-UDP Protocoll 3

1.4 _Tsunami-UDP Pr I, 3
2__Related Works| 4

Xiii

B Transmission Control Protocol VS User Datagram Protocol| 6

3.1 Comparison| e e e e 7

(3.2 Other Comparisons| it 9

4 Performance Comparison of Tsunami-UDP protocol with other UDP-based Proto- |

[cols over Fast Long Distance Network | 11
4.1 Effictency and Stability| o oo 11
@“.2 ThroughputvslLoss| 13
4.3 Throughput vs RTT (Round Trip Time)| 14

{5 Report on Present Investigation| 17
B1 Problem Statement] 17
5.2 Ourworkl e 17

6 Conclusi IF Direch FWork 2

[References| 23

(I Installation and Usage of Tsunami-UDP| 25
L1 Installation] 25
1.2 Usage| e 27

X1V

CHAPTER 1

Introduction

Professionals working in various fields such as astronomy, biology, research, industry etc. need
to have access to vast volumes of data and information (also referred to as big data) for analysis,
evaluation and research work. So this much data may need to transfer over long distances to
allow collaboration among professionals around the world and work efficiently and effectively.
Hence it is important for them to have appropriate and suitable transfer protocols to optimize
data transfer speed. For improving the performance of data transfer, providing only higher link
capacity is not going to help much because the data transfer protocols have certain limitations.
It is essential to select an efficient data transfer protocol that can efficiently use the available
capacity, and accelerate the overall data transfer process. For the very same purpose Tsunami-
UDP protocol comes into action, but before we study that, we need to have a little insight
about TCP and UDP protocols and their limitations and how Tsunami-UDP protocol came into

existence.

Chapter 1. Introduction

1.1 Transmission Control Protocol

TCP is a well defined standard that tells how network conversation can be established and well
maintained through which application programs on either side can communicate and exchange
data. TCP works along with the Internet Protocol (IP), which defines how computers at sender
and receiver send packets of data to each other. Together, TCP and IP are the basic rules
defining the Internet. TCP is defined by the Internet Engineering Task Force (IETF) in the
Request for Comment (RFC) standards document number 793. TCP is a connection-oriented
protocol, which means a connection is established and maintained until the communication is
intact i.e. until the application programs at each end have finished exchanging messages. It
determines how to break application data into packets that networks can deliver, sends packets
to and accepts packets from the network layer, manages flow control, and because it is meant
to provide error-free data transmission handles retransmission of dropped or garbled packets as
well as acknowledgement of all packets that arrive. In the Open Systems Interconnection (OSI)
communication model, TCP covers parts of Layer 4, the Transport Layer, and parts of Layer 5,

the Session Layer.

1.2 User Datagram Protocol

Unlike TCP, the User Datagram Protocol (UDP) does not present data as a stream of bytes,
also there is no requirement of establishing a connection with another program in order to
exchange information. Data is exchanged in discrete units called datagrams, which are similar
to IP datagrams. In fact, the only features that UDP offers over raw IP datagrams are port
numbers and an optional checksum to maintain data integrity. Transmission, using this protocol
is susceptible to threats lying in the transmitting medium UDP is sometimes referred to as an
unreliable protocol because when a program sends a UDP datagram over the network, there
is no way for it to know that it actually arrived at its destination. This means that the sender
and receiver must typically have their own application protocol on top of UDP. Much of the
work that TCP does transparently (such as generating checksums, acknowledging the receipt of

packets, retransmitting lost packets and so on) must be performed by the application itself.

2

1.3. Need For Tsunami-UDP Protocol

1.3 Need For Tsunami-UDP Protocol

With the limitations of UDP, you might wonder why it’s used at all. UDP has the advantage
over TCP in two critical areas: speed and packet overhead. Since TCP is a reliable protocol, it
goes through great lengths to ensure that data arrives at it’s destination intact, and as a result it
exchanges a fairly high number of packets over the network i.e. retransmission of packets take
place. UDP doesn’t have this overhead, and is considerably faster than TCP. In those situations
where speed is paramount like in video conferencing, or the number of packets sent over the
network must be kept to a minimum, UDP is the solution. Simply relying on TCPs congestion
control may result in inefficient utilization of long fat pipes due to its conservative behavior
when handling packet loss events. Understanding behavior of TCP and UDP based high speed
data transfer protocols will allow researchers to choose a protocol that best suits their network

environment, which may dier from one research site to another.

1.4 Tsunami-UDP Protocol

Because of limitations of TCP and UDP protocols, need for Tsunami UDP protocol was felt.
The authors were working for the launch of the Global Terabit Research Network [11]. A
launch demonstration was there at a meeting in Brussels and they wanted to do something tacky
and worth memorable. They had demonstrated wire-rate gigabit Ethernet transfers in their lab
using normal Ethernet MTUs and were confident they could easily achieve more than 500Mbps.
One PC was shipped to Belgium and one to Seattle. Once they were set up, the testing began.
Because of a 3 percent packet loss, the rates varied from a few tens of Mbs to a very few
hundreds of Mbs. Less than one week before the demo, the Lab decided they were going to
have to design their own protocol. Less than 3 days after a white board diagram, there was a
working prototype and a few days later the demo managed to average over 800Mbps for 17
hours and 40 minutes. From the general comments and the amount of time involved, this was

probably a UDP blast with a minimum of other features.

CHAPTER 2

Related Works

With fiber optic interconnections, processor speeds in gigahertz, and network interface cards
of 10 gigabits per second, hardware did not seem to be the limiting factor in data transfer. It
had become obvious that the protocols that were the basis of networking are not suited to the
technology of the current generation networking [4]. The most widely used protocol for data
transfer over IP networks is TCP because of the fact that TCP guarantees delivery in order, no
loss of data, and fairness. Unfortunately, the implementations of these features had made TCP
ill-suited to get optimal bandwidth from high-speed, high latency network links [4]. In industry,
Cloud computing and Big Data had been catching everybodys attention lately because of their
resourcefulness. But Cloud Computing involves transmission of large amount of datasets (Big
Data) from one geographical location to other, so they had to be complimented with some pro-
tocol that makes this data transmission fast. In terms of performance, Tsunami-UDP protocol
did provide better transmission than any TCP protocol because of being a UDP protocol from
core but using transmission controls on top of it [5]. This is why AWS (Amazon Web Services)
had been using Tsunami-UDP protocol to transfer Big Data from Amazon EC2 to Amazon S3
[6].

But current version of Tsunami-UDP protocol did lack over other traditional TCP and UDP

protocols in terms of functionalities. Current version of Tsunami-UDP protocol did lack in

4

multithreading, TUI/GUI, CLI(Command Line Interface), predictability of data delivery, sup-
port to Jumbo packets etc [7]. So we got motivated to enhance the current version of this

protocol by integrating multithreading, TUI/GUI, CLI and predictability of data delivery.

CHAPTER 3

Transmission Control Protocol VS User Datagram Protocol

Now let us discuss about the TCP and UDP protocols and their comparison. TCP is connection
oriented once a connection is established, data can be sent in either direction. UDP is a simpler,
connectionless Internet protocol. Multiple messages (called datagrams) are sent as packets in
chunks using UDP.

3.1. Comparison

3.1 Comparison

Transmission Control Protocol

User Datagram Protocol

Connection

Function

Usage

Ordering of data packets

TCP is a connection-oriented proto-

col.

As a message makes its way across
the internet from one computer
to another. Since it is connec-
tion based, proper connection is re-

quired.

TCP is generally used for those ap-
plications that require high reliabil-
ity, and transmission time is rel-
atively less critical such as in e-

mailing.

TCP rearranges data packets in the

order specified.

UDP is a connectionless pro-

tocol.

UDP is also a protocol used

for message transport or
transfer. It is not connection
based which means that one
program can send a load
of packets to another and
that would be the end of the
relationship. No overhead for

connection is required.

UDP is suitable for applica-
tions that require fast, effi-
cient transmission, such as
games and video conferenc-
ing. UDP’s stateless nature is
also useful for servers that an-
swer small queries from huge

numbers of clients.

UDP has no inherent order
as all packets are indepen-
UDP is

not responsible for ordering

dent of each other.

of packets.If ordering has to
be done, it has to be managed

by the application layer.

Chapter 3. Transmission Control Protocol VS User Datagram Protocol

Speed of transfer

Reliability

Header Size

Common Header Fields

Streaming of data

Weight

Data Flow Control

The speed for TCP is slower than
that of UDP.

TCP ensures that the data trans-
ferred remains intact and arrives in
the same order or fashion in which

it was sent.
TCP header size is 20 bytes

Destination port,
Check Sum

Source port,

Data is read as a byte stream or
contigious stream of bytes, no clear
distinguishing indications are trans-
mitted to signal message (segment)

boundaries.

TCP is heavy-weight. Before any
user data could be sent, there is a
requirement to set up a socket con-
nection for which TCP uses three
packets. TCP handles both reliabil-

ity and congestion control.

TCP does Flow Control i.e manage
the rate of data transmission. TCP
handles both reliability and conges-

tion control.

UDP is faster than TCP
because there is no error-
checking for packets at Data
link layer.

UDP does not even guarantee
that the messages or packets

sent would reach.

UDP Header size is 8 bytes.

Destination port, Source port,
Check Sum

Packets (Datagrams) are sent
individually and are checked
for integrity only if they ar-
rive. Packets have definite
boundaries which are hon-
ored upon receipt, meaning
a read operation at the re-
ceiver socket will yield an en-
tire message as it was origi-

nally sent.

Unlike TCP, UDP s
lightweight. There is no par-
ticular ordering of messages,
no tracking connections,
etc. It is simply a small
transport layer designed or

implemented on top of IP.

UDP does not have any op-
tion for flow control which
means low reliability and low

congestion control.

3.2. Other Comparisons

Error Checking | TCP does error checking and do re- | UDP does error checking, but
covery by either retransmission or | no recovery options.
error correction.

Fields 1. Sequence Number, 2. AcK num- | 1. Length, 2. Source port, 3.
ber, 3. Data offset, 4. Reserved, 5. | Destination port, 4. Check-
Control bit, 6. Window, 7. Urgent | sum

Pointer 8. Options, 9. Padding, 10.
Check Sum, 11. Source port, 12.
Destination port

Acknowledgement | Acknowledgement segments No Acknowledgment

Handshake SYN, SYN-ACK, ACK No handshake (connection-
less protocol)

Table 1: Differences between TCP and UDP [[10]

3.2 Other Comparisons

Differences in Data Transfer Features

TCP: A reliable and ordered delivery of a stream of bytes from user to server or vice versa is
ensured by TCP.

UDP is not dedicated to end to end connections and communication does not check readiness

of receiver. So it is not reliable.

Connection

TCP is a heavy weight connection. It requires three packets for a socket connection and handles
both congestion control and reliability.

UDP is a lightweight transport layer designed on top of IP. There are no tracking connections

or ordering of messages.

Method of transfer

TCP: Data is read as a byte stream and message is transmitted to segment boundaries.

UDP: Here messages are in form of packets which are sent individually and on arrival are
checked for their integrity using checksum. Packets have defined boundaries while data stream

has none.

Chapter 3. Transmission Control Protocol VS User Datagram Protocol

Working Of TCP and UDP

A TCP connection is established via a three way handshake, which is a process of initiating
and acknowledging a connection. Once the connection has been established, data transfer can
begin. After transmission is done, the connection between sender and receiver is terminated by
closing of all established virtual circuits.

UDP uses a simple transmission model without any inbuilt hand-shaking dialogues which can
guarantee reliability, ordering, or data integrity. Thus, UDP provides a service which is un-
reliable and datagrams may or may not arrive out of order, appear duplicated, or go missing
without any notice. UDP assumes that error checking and correction is either not necessary or
performed in the application, and hence avoids the overhead of such processing at the network
interface level which results in increased speed. Unlike TCP, UDP is compatible with packet

broadcasts (sending to all on local network) and multicasting (send to all subscribers).

Different Applications of TCP and UDP

Web browsing, email and file transfer are some common applications that make use of TCP.
TCP is used for controlling segment size, rate of data exchanged, flow control and network
congestion. TCP is preferred over UDP where error correction facilities are required at network
interface level.

UDP is largely used by those applications which are time sensitive as well as by servers that
answer small queries from huge number of clients. UDP is compatible with packet broadcast
- sending to all on a network and multicasting sending to all subscribers. UDP is commonly

used in Domain Name System, Voice over IP, Trivial File Transfer Protocol and online games.

10

CHAPTER 4

Performance Comparison of Tsunami-UDP protocol with
other UDP-based Protocols over Fast Long Distance
Network

4.1 Efficiency and Stability

The protocol efficiency can be measured by Utilization of network resources which are cur-
rently available. The bandwidth utilization is important in case of FLDNet (Fast Long Distance
Network) because the link in this case is costly. High speed with stable throughput is very im-
portant in case of most e-Science applications. Several experiments are made in typical FLDnet
configuration (RTT>300 m sec, loss rate = 0.1 percent). TCP has low throughput (about 1.05
Mbps) [1]]. Figure 4.1 shows the throughput of the UDP-based protocols while transferring pay-
loads of different size.

TCP has much smaller throughput than all three UDP-based protocols. RBUDP (Reliable Blast
UDP) and Tsunami has throughput up to 660 Mbps which is very high as compared to others

11

Chapter 4. Performance Comparison of Tsunami-UDP protocol with other UDP-based
Protocols over Fast Long Distance Network

TS
6:-‘{]_ T —
i
00 Tk
f == RHLI[P
53l
i - DT
£ 5007 =&~ Teunami
5 4504
5 4007
B350
2
E 004 o
- 2304
200
1504
100 M e—0—s 4 4
T T L) T 1
il 1 2000 3000 4000 S0

Payload size (MB)

Figure 4.1: Comparison of throughput of UDP based protocols [1]]

[1]. But in case of large file transfer (>2 GB), we can see drop in throughput of RBUDP which
is obvious, because for transferring large file RBUDP use stream. In case of Tsunami, there
is no limit on file size while throughput remains high. But block size and buffer size are the
parameters which should be at optimal value. The throughput in case of UDT (UDP based ap-
plication level Data Transfer Protocol) is relatively low. And there is no considerable effect on

UDT throughput because of payload size.

As for stability, there is no dramatical change in the throughputs of RBUDP and Tsunami with
time. But UDT is unstable. Figure 4.2 represents the changes in throughput of UDT throughput

with time.

There are similarities in throughput of UDT and TCP, its because congestion control in UDT
is made by using DAIMD (Delay-based Additive Increase Multiplicative Decrease) algorithm.
There is dramatical reduction in the sending rate whenever there is a packet loss. Thus UDT

has difficulty in keeping throughput stable in case of noisy link.

12

4.2. Throughput vs Loss

3l

Throughput {MMbps)

-1 TT
1 4 7 10 13 16 19 22 25 28 31 M W7

[ime (sec)

Figure 4.2: UDT Throughput vs time [1]]

4.2 Throughput vs Loss

On FLDnet, in case of end-to-end lightpath link, the rate of packet loss is very low because this
type of dedicated link has no congestion and the error rate in case of optical link is much low.
But, sometimes, packet losses occur due to several reasons like network equipment problems
or performance problems in terminal system. So, the several loss rate conditions are applied to

investigate throughputs. [[1]

It can be represented that, in complete absence of loss rate, high throughput can be achieved by
TCP (361.28 Mbps) too (Buffer size of TCP is adjusted). However, in the presence of even a
much small loss rate, there is a dramatical reduction in throughput. Comparatively, protocols
based on UDP have throughput much higher than that of TCP. In case of RBUDP and Tsunami,
the throughput doesn’t get affected much because of the packet loss rate. But for UDT, the
impact is effective. It’s just because the mechanism for congestion control of UDT has great
sensitivity for the packet loss. In case of higher loss rate, performance of UDT is also poor like

TCP.

13

Chapter 4. Performance Comparison of Tsunami-UDP protocol with other UDP-based

Protocols over Fast Long Distance Network

004

IR

S0+

400+

300+

Throughput (Mbps)

214

10401

0

—a— RBUDP
== LIDOT
—&— Tsunami
-¥- TCP

——

T — Y
0L0in 001 i1 I

Packet loss rate (%)

Figure 4.3: Throughputs under different loss [[1]]

4.3 Throughput vs RTT (Round Trip Time)

On FLDnet, there is transfer of bulk data between different terminals throughout the world.

So, different propagation delays

occur if the distance between terminals is different. Therefore,

different RTT conditions are applied to test throughputs of these protocols. It can be observed

60
550
500
4504
400
150
100
2501
200
150

10

Throughput {(MMbps)

—& REBUDP
= UDT
—de Taymams
- TCP

[B

T T T T T T
0 10 208 30 400 S0 il

RTT {m see)

Figure 4.4: Throughputs under different RTT conditions [1]

that in the case where RTT is very small, performance of TCP is better (<2 m sec in LAN), but

performance becomes poor in case of big RTT (in case of WAN and FLDnet). Still, protocols
based on UDP have much higher throughput than that of TCP. As the increasing of RTT occurs,

there is a decrease in the throughputs of UDT and RBUDP. The throughput in case of Tsunami

protocol is higher than others and changes much less as the increase in RTT.

14

4.3. Throughput vs RTT (Round Trip Time)

UDT Tsunami UFTP GridFTP
Multithreaded no no no yes
Protocol Overhead 10% 20% 10% 6-8%
Encryption no no yes yes
C++ Sourcecode yes yes yes yes
Command line no no yes yes
Binaries no (source | no (source | no (CLI | no (CLI
code only) | code only) | only) only)
UDP based point-to- | yes yes yes no
point
Firewall friendly Partial no Partial no
(no auto- (no auto-
detection) detection)
GUI client no no no no
Server with secure | no no no yes
user accounts
Congestion control yes (UDP | yes (lim- | yes (con- | yes-using
blast-mode | ited) gestion TCP
preferred) control file
has to be
specified
before the
transfer
starts)
Automatic retry and | no no no (manual | yes
resume resume
yes)
Jumbo Packets yes no yes (upto- | yes
8800 bytes)

15

Chapter 4. Performance Comparison of Tsunami-UDP protocol with other UDP-based
Protocols over Fast Long Distance Network

IPv6 Support yes no no no

Support for any | no no no yes
packet loss

Support for low band- | no no no no
width

High packet loss i.e. | no no no no
satellite

Table 2: Comparison between for products using UDP based data transfer [§]]

16

CHAPTER 5

Report on Present Investigation

5.1 Problem Statement

The present version of Tsunami-UDP requires to be built from source (no binaries have been
provided). This is only a source code implementation of the sender and receiver. All the func-
tionality involving authentication of user, reporting, monitoring and file management have to
be implemented by the programmer. This open source version of implementation of the source
code lacks in some aspects compared to similar paid products - no multithreading, no GUI/TUI
support, no CLI and no prediction of data delivery, etc. Our focus is to integrate some of these

services into the existing Tsunami-UDP open source project.

5.2 Our work

Implementation of multi-threading : The server was designed in such a way that it runs as a

single process to service the requests. Whenever it receives a request it forks a separate child

17

Chapter 5. Report on Present Investigation

process to service that request. In fact, the process creation method is time consuming and
resource intensive, however if the new process will perform the same task as the existing pro-
cesses, why incur all that overhead?

We can design the server in such a way that on receiving a clients request it would select a new
thread from available threadpool to service the request and resume listening for additional client
requests. Hence, a thread will be chosen everytime from threadpool to service the request.
Before our implementation, if two clients are connected to the server, then two separate in-
stances of the server process would run to service the requests by the two clients simultaneously.
But after our implementation of multithreading, now multiple clients are serviced by a single
server process. We can check the processes running in the system with the ps command.
Presently, for the first step a simple multi-threaded model is followed here. A thread pool is

taken.

thpool_t* threadpool; /* make a new thread pool structure */
threadpool=thpool_init (MAX_THREADS); /% initialise it to MAXTHREADS
number of threads */

thpool_add_work (threadpool, (voidx)client_handler,

(void*) (&thread_arguments)); /*Function to Run the thread x/
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; /* Create

mutex variable «*/

thpool_t+* thpool_init (int threadsN) /% Initialise thread pool =/
void thpool_thread _do (thpool_t+* tp_p) /+ What does the thread do =/
void thpool_destroy (thpool_t* tp_p) /* Destroy the threadpool =/

Figure 5.2 shows the snapshot of ps command while running current version of Tsunami UDP
and Figure 5.3 shows the snapshot of ps command while running our enhanced version of it. We
can see that while it was connected with two different clients, two different process of tsunamid
are being forked to handle the different clients along with a server process. But in our enhanced
version, a single process handles all the two clients in a multithreaded approach, allocating a

thread to each client to service its request.

Implementation of Terminal User Interface:
The TsunamiUDP presently requires to be compiled and then run the binaries created directly

and had no user friendly interface. We have developed a TUI interface for this protocol using

18

5.2. Our work

Threadpool

(3) select a thread
from threadpool to

(2) request a thread A
service request

from threadpool to

@ (1) request m service the request "We:lad

(4) resume listening to
additional client requests

Figure 5.1: Multithreaded Server Architecture

localhost ~]# ps -2 | grep tsunamid
:00 tsunamid
108 tsunamid
:08 tsunamid

Figure 5.2: Snapshot of ps commad while running current version

& 1 home/mabasterm " 3. MY VIRT 08 " 4. MYVIR
[root@lacalhost ~[# ps -e | grep tsunamd

2432 pts/3 00:00:00 tsunan1d
[root@lacalhost ~1# ||

Figure 5.3: Snapshot of ps command while running our improved version

19

Chapter 5. Report on Present Investigation

Python and Shell Scripting which automates the whole process in a user friendly way.
We can now use the whole complex process of usage (described in Appendix A) of the protocol

in a very simple and user friendly manner.

welcome to TUI of Tsunami Enter the IP Address of
UDP protocol the Destination

192.168.12.2201

<Cancel=

Enter the IP Address of
the Source

192.168.55.24 rootll

Enter Client's Username :

<Cancel> BT

B <Cancel=

WANT TO CONTINUE ?
Enter Client's Password:

1 &=
1 2 NO

BNEE <cancel>
= el :

Figure 5.4: Screenshots of TUI Application

Implementation of Command Line Interface (CLI) :

A CLI is an user interface to an operating system or an application where responses to visual
prompt are made by user by typing in a command on a specified line, responded back from the
system, and then enters another command, and so forth. But the present version of Tsunami-
UDP doesn’t have the interactive features of a CLI. We have tried to make the CLI more user

20

5.2. Our work

interactive and implemented many ideas in the project, as present in many Command Line
Interfaces (like in Bash shell, ftp, etc). Examples of some of the features are running through the
history list with the UP and DOWN arrow keys, auto-completion of the commands and filename
using TAB key and getting a list of commands and their help while using the application. We
have implemented CLI using the GNU Readline Library, which provides a set of functions to
be used by applications that allow users to edit command lines as they are typed in [12]. We
have successfully implemented the CLI in the Tsunami-UDP application and has in turn made

it more user interactive.

21

CHAPTER 6

Conclusion and Future Direction of Work

Conclusion

Multithreading has been implemented in Tsunami UDP and now the process selects a thread
of execution for serving a new request everytime instead of forking a new child process. The
Terminal User Interface has given altogether a whole new look and feel to the Tsunami UDP
protocol as it is now much easier to use without the hassle of configuration and other formalities
that had to be carried out. We have successfully implemented the CLI in the Tsunami-UDP ap-
plication and has in turn made it more user interactive in the command line. The project has been
uploaded to http://github.com/akashpandal23/tsunami-udp-enhanced and

been made open source to motivate further enhancement in this.

Future Direction of work

Tsunami-UDP still lacks in various fields, like it doesn’t support predictability of data delivery,
is not firewall friendly, doesn’t have server with secure user accounts and doesn’t have the
facility of automatic retry and resume in case of failure. This is the main reason why tsunami is

not up to the mark when compared to other paid transfer protocols.

22

http://github.com/akashpanda123/tsunami-udp-enhanced

References

[1] LiJ., Qian H., Ren Y., Tang H. (2009), ”Performance Comparison of UDP-based Protocols
Over Fast Long Distance Network™. Information Technology Journal 8, Beijing, China,
pp- 600-604.

[2] Brownlee N., Mahanti A., Se-young Yu. (2013). "Comparative performance analysis of
high-speed transfer protocols for big data”, 2013 IEEE 38th Conference on Local Com-
puter Networks (LCN), Sydney, NSW, pp. 292-295.

[3] LiJ.,RenY., Yue Z (2011), "Performance Evaluation of UDP-based High-speed Transport
Protocols”, 2011 IEEE 2nd International Conference on Software Engineering and Service
Science (ICSESS), Beijing, China, pp. 69-73.

[4] Steven M. Carter, Tom Dunigan, Florence Fowler (2004), ”An Evaluation of UDP Trans-
port Protocols”.

[5] https://skillupjapan.co.jp/news/rd_product/pdf/UDPFiletransfer_Final.pdf

[6] http://blogs.aws.amazon.com/bigdata/post/Tx33R88EKHCWEOHT/Moving-Big-Data-
into-the-Cloud-with-Tsunami-UDP

[7] http://www.atomrain.com/it/it/open-source-udt-tsunami-uftp-gridftp-paid-data-transfer-
protocols

[8] http://www.filecatalyst.com/open-source-fast-file-transfers

[9] https://github.com/resOnatOr/tsunami-udp

23

References

[10] http://www.diffen.com/difference/TCP_vs_UDP
[11] http://www.csm.ornl.gov/dunigan/net100/udp/UDP_Tsunami.html

[12] http://cnswww.cns.cwru.edu/php/chet/readline/rltop.html

24

APPENDIX |

Installation and Usage of Tsunami-UDP

I.1 Installation

I. Dependencies
1. C and C++ Compiler :

yum install gcc-c++

2. Automake :
Automake package is required for the making binaries using make

If automake is not currently installed, then we can install it using

yum install automake

I1. Get the code:
If the source code has not yet being downloaded, then we can do so with an anonymous
CVS checkout:

25

Appendix 1. Installation and Usage of Tsunami-UDP

cvs —-z3 -d:pserver:anonymous@tsunami-udp.cvs.sf.net:/cvsroot/

tsunami-udp co —-P tsunami-udp

Later we can use the usual

cvs update

command to get and merge updates from the CVS into our local copy of the code.

III. Compilation
If we want to build Tsunami for a big endian i.e. non-Intel platform, we have to first edit

Jcommon/Makefile.am and have to see instructions there.

For compiling tsunami, the normal process is:

$./configure

S make

From the configure output errors, we have to find all those missing packages that we had

never even heard of and install them, then try ./configure again.

If there are ./configure Makefile.in complaints or similar, try

$./recompile.sh

That should build the entire tsunami, including everything in the subdirectories (in /server,

/client, etc).

An optional

S make install

will install the tsunami binaries onto the system. The binaries that will be installed are:

26

L2. Usage

App Name From
Tsunami server tsunamid Jserver/tsunamid
Tsunami client tsunami Jclient/tsunami

Realtime server rttsunamid ./rtserver/rttsunamid

Realtime client rttsunami Jrtclient/rttsunami

The binaries will be placed into /usr/local/bin or similar.

Contents of individual subdirectories can be recompiled with for example

$ cd client
S make clean

S make

(Note that you first have to compile the entire source tree via *./configure’ and *make’.

Only after that you can recompile individual subdirectories without problems)

1.2 Usage

—Server-

On the server PC, we have to the directory where we have the files that should be served,

and then start the Tsunami server with e.g.:

$ cd /where/my/files/are

S ./tsunamid

The server serves files from its current working directory.

To allow clients to use the ”GET *” command, start the Tsunami server with:

27

Appendix 1. Installation and Usage of Tsunami-UDP

S tsunamid =
or

S ./tsunamid fileToServel fileToServe2

—Client-

On the client PC, start the command line client:

S cd /where/to/receive/files

$./tsunami

The client will store downloaded files into the current working directory.

Usual commands in the client are like crude FTP:

tsunami> connect [IP ADDRESS]
tsunami> get filename

tsunami> get «*

28

	Dedicated To
	Acknowledgement
	Abstract
	Introduction
	Transmission Control Protocol
	User Datagram Protocol
	Need For Tsunami-UDP Protocol
	Tsunami-UDP Protocol
	Related Works
	Transmission Control Protocol VS User Datagram Protocol
	Comparison
	Other Comparisons

	Performance Comparison of Tsunami-UDP protocol with other UDP-based Protocols over Fast Long Distance Network
	Efficiency and Stability
	Throughput vs Loss
	Throughput vs RTT (Round Trip Time)

	Report on Present Investigation
	Problem Statement
	Our work

	Conclusion and Future Direction of Work
	References
	Installation and Usage of Tsunami-UDP
	Installation
	Usage

